Mixed Model Association with Family-Biased Case-Control Ascertainment.
نویسندگان
چکیده
Mixed models have become the tool of choice for genetic association studies; however, standard mixed model methods may be poorly calibrated or underpowered under family sampling bias and/or case-control ascertainment. Previously, we introduced a liability threshold-based mixed model association statistic (LTMLM) to address case-control ascertainment in unrelated samples. Here, we consider family-biased case-control ascertainment, where case and control subjects are ascertained non-randomly with respect to family relatedness. Previous work has shown that this type of ascertainment can severely bias heritability estimates; we show here that it also impacts mixed model association statistics. We introduce a family-based association statistic (LT-Fam) that is robust to this problem. Similar to LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold model; however, LT-Fam uses published narrow-sense heritability estimates to avoid the problem of biased heritability estimation, enabling correct calibration. In simulations with family-biased case-control ascertainment, LT-Fam was correctly calibrated (average χ2 = 1.00-1.02 for null SNPs), whereas the Armitage trend test (ATT), standard mixed model association (MLM), and case-control retrospective association test (CARAT) were mis-calibrated (e.g., average χ2 = 0.50-1.22 for MLM, 0.89-2.65 for CARAT). LT-Fam also attained higher power than other methods in some settings. In 1,259 type 2 diabetes-affected case subjects and 5,765 control subjects from the CARe cohort, downsampled to induce family-biased ascertainment, LT-Fam was correctly calibrated whereas ATT, MLM, and CARAT were again mis-calibrated. Our results highlight the importance of modeling family sampling bias in case-control datasets with related samples.
منابع مشابه
Secondary phenotype analysis in ascertained family designs: application to the Leiden longevity study
The case-control design is often used to test associations between the case-control status and genetic variants. In addition to this primary phenotype, a number of additional traits, known as secondary phenotypes, are routinely recorded, and typically, associations between genetic factors and these secondary traits are studied too. Analysing secondary phenotypes in case-control studies may lead...
متن کاملMixed model with correction for case-control ascertainment increases association power.
We introduce a liability-threshold mixed linear model (LTMLM) association statistic for case-control studies and show that it has a well-controlled false-positive rate and more power than existing mixed-model methods for diseases with low prevalence. Existing mixed-model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this probl...
متن کاملAn empirical comparison of case-control and trio based study designs in high throughput association mapping.
Motivated by high throughput genotyping technology, our aim in this study was to experimentally compare the power and accuracy of case-control and family trio based approaches for haplotype based, large scale, association gene mapping. We compared trio based and case-control study designs in different disease models, and partitioned the performance differences into separate components: those fr...
متن کاملAscertainment through family history of disease often decreases the power of family-based association studies.
Selection of cases with additional affected relatives has been shown to increase the power of the case-control association design. We investigated whether this strategy can also improve the power of family-based association studies that use the transmission disequilibrium test (TDT), while accounting for the effects of residual polygenic and environmental factors on disease liability. Ascertain...
متن کاملSimultaneous Modeling of Disease Status and Clinical Phenotypes To Increase Power in Genome-Wide Association Studies.
Genome-wide association studies have identified thousands of variants implicated in dozens of complex diseases. Most studies collect individuals with and without disease and search for variants with different frequencies between the groups. For many of these studies, additional disease traits are also collected. Jointly modeling clinical phenotype and disease status is a promising way to increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of human genetics
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2017